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The first total synthesis of Goniothalesdiol A, isolated from the stems of Goniothalamus amuyon (Annon-
aceae) is reported. The C2 stereocentre and C3/C4 syn diol were created by a Sharpless kinetic resolution
followed by acetonide formation. The tetrahydropyran ring was formed and the C6 stereocentre was fixed
by intramolecular oxy-Michael addition.

� 2009 Published by Elsevier Ltd.
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Figure 1. Chemical structures of Goniothalesdiol A and Goniothalesacetate.
Natural products with 2,6-disubstituted tetrahydropyran scaf-
folds have gained prominence recently owing to their excellent
biological properties. Several natural products have the substituted
pyran moiety with cis stereoconnectivity at the 2,6-positions.1

Some recent examples, which fall into this class, include leucascan-
drolides,2 phorboxazoles,3 (+)-SCH 351448.4 The synthesis of these
compounds has attracted attention owing to their interesting bio-
logical properties and challenges posed by the substitution pattern.

The styryl lactones5 and acetogenins6 are two major types of
bioactive compounds isolated from the Goniothalamus (Annona-
ceae) species. Recently, two new compounds Goniothalesdiol A 1
and Goniothalesacetate 2 (Fig. 1) were isolated from the stems of
a southern Taiwan tree Goniothalamus amuyon. The structure and
relative stereochemistry of 1 were assigned on the basis of NMR
spectroscopy and the absolute configuration was predicted by
biosynthesis.7

In continuation of our interest in synthesising natural products
possessing a pyran moiety,8 we report herein an efficient synthetic
route to Goniothalesdiol A involving Chan alkyne reduction, Sharp-
less kinetic resolution and pyran ring formation by intramolecular
oxy-Michael addition as key steps (Scheme 1).

Our synthesis began with the protection of homopropargyl
alcohol 3 as its benzyl ether 4 by treating with NaH and benzyl bro-
mide. The ether 4 was treated with n-BuLi in THF to generate the
lithium acetylide, which was subsequently reacted with benzalde-
hyde to give propargyl alcohol 5. Alcohol 5 was reduced with
LiAlH4 in THF to afford the allyl alcohol 6.9 The key intermediate
Elsevier Ltd.
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epoxy alcohol 7 was prepared by the Sharpless kinetic resolution10

of 6 using D(�)-DET and TBHP (80% yield, 96% ee).
Compound 7 was treated with anhydrous acetone in the pres-

ence of BF3�Et2O at 0 �C to furnish acetonide 8 in 90% yield.11 This
resulted in the fixing of the two hydroxyl groups on C4 and C3 with
an axial–equatorial relationship in Goniothalesdiol A 1, which was
confirmed by 1H NMR analysis (J = 3.8 Hz).

Alcohol 8 was protected as its TBDMS ether 9 by using
TBDMSCl and imidazole. The oxidative cleavage of ether 9 with
DDQ gave primary alcohol 10 which was subjected to Swern oxi-
dation to give the aldehyde which was treated with phosphorous
ylide in refluxing benzene to give the a,b-unsaturated ester 11
with trans-configuration. The TBDMS ether was deprotected by
treating with TBAF in dry THF at room temperature to give alcohol
12. Alcohol 12 was then treated with p-TSA in methanol at room
temperature to cleave the acetonide followed by intramolecular
oxy-Michael addition12 of the C2 hydroxyl group to the C6, C7
double bond to accomplish the target molecule Goniothalesdiol
A 1 (90%) (Scheme 2). The spectral data were identical in all re-
spects with that of the authentic sample.7,13 The C2, C6 syn stereo-
chemistry was achieved during the pyran ring formation and was
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Scheme 1. Retrosynthetic analysis of Goniothalesdiol A.
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Scheme 2. Reagents and conditions: (a) (i) NaH, DMF, 0–25 �C, 1 h, BnBr, 0–25 �C, 3 h 85%; (b) n-BuLi, dry THF,�78 �C, PhCHO, 4 h , 90%; (c) LiAlH4, dry THF, reflux, 3 h, 95%; (d)
(�)Diisopropyl-D-tartrate, TBHP, Ti (OiPr)4, dry DCM, �20 �C, 12 h, 80%; (e) BF3�Et2O, dry acetone, 0 �C, 4 h, 88%; (f) TBDMSOTf, 2,6-lutidine, DCM, 0–25 �C, 1 h, 95%; (g) DDQ,
DCM, 25 �C, 2 h , 95%; (h) Oxalyl chloride, dry DMSO, dry DCM, �78 �C, Et3 N, quant.; (i) Ph3P@CHCOOMe, benzene, reflux, 1 h, 80%; (j) TBAF, dry THF, 25 �C, 2 h, quant.; (k)
PTSA, methanol, 25 �C, 2 h, 95%.
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Figure 2. Coupling correlations in 1H NMR spectroscopy.
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confirmed by measuring the coupling constants in 1H NMR spec-
troscopy of the final molecule Goniothalesdiol A 1.

The stereochemistry of Goniothalesdiol A was assigned by anal-
ysis of 1H NMR coupling constants. The J 2/3 value 8.2 Hz indicated
the axial-axial position of H2 and H3. The observed J 5/6 value 8.6
Hz determined the confirmation of H6 as axial and J 3/4 Hz value
3.8 Hz indicated the axial–equatorial relationship between H3
and H4 (Fig. 2).

In conclusion, we have described a concise stereoselective syn-
thesis of Goniothalesdiol A in 11 steps from homopropargyl alcohol
in a highly stereoselective manner using Sharpless kinetic resolu-
tion and intramolecular oxy-Michael addition as key steps.
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